We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.
A Faber-Krahn inequality for mixed local and nonlocal operators
Biagi, Stefano;
2023-01-01
Abstract
We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi - A Faber - Krahn inequality for mixed local and nonlocal operators.pdf
Accesso riservato
Dimensione
685.3 kB
Formato
Adobe PDF
|
685.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.