We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.

A Faber-Krahn inequality for mixed local and nonlocal operators

Biagi, Stefano;
2023-01-01

Abstract

We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.
2023
File in questo prodotto:
File Dimensione Formato  
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi - A Faber - Krahn inequality for mixed local and nonlocal operators.pdf

Accesso riservato

Dimensione 685.3 kB
Formato Adobe PDF
685.3 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1262699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 34
social impact