Wire harnesses are vital for any modern automotive vehicle. They control the basic functions in a vehicle, for example, windshield wipers and critical functions such as sensors, cameras, and autopilot functions. Thus, the quality of wire harness assembly is highly important. Today, wire harnesses are usually assembled manually, which creates unergonomic and tedious working conditions for operators. Traditional and collaborative industrial robots have been identified as possible solutions to overcome challenges faced by operators in this type of assembly. The international research community has proposed many solutions for automating the assembly of wire harnesses in automotive vehicles but despite these solutions, the industry has not been able to adopt a method to automate this assembly process fully or partially. This paper presents a review of findings on robot-assisted wire harness assembly processes based on a systematic literature review. Specifically, the assembly of wire harnesses in Electric Vehicles (EVs). The state-of-the-art review focuses on solutions to improve unergonomic work situations and ensure the quality of assembly operations. Best practices and reasons for the lack of extensive implementation in automotive final assembly systems are described. Further, the paper presents suggestions based on success stories where the automation of the wire harness assembly in automotive vehicles has been realised by leveraging human-centred automation solutions. Based on the findings, this paper identifies the research for future study. The findings also indicate that there is already technology that can support the automation of wire harness assembly processes in EVs but it is crucial to identify the human aspects and the role of humans in the assembly of wire harness assembly process.
Review of Current Status and Future Directions for Collaborative and Semi-Automated Automotive Wire Harnesses Assembly
Quadrini, Walter;Fumagalli, Luca;
2023-01-01
Abstract
Wire harnesses are vital for any modern automotive vehicle. They control the basic functions in a vehicle, for example, windshield wipers and critical functions such as sensors, cameras, and autopilot functions. Thus, the quality of wire harness assembly is highly important. Today, wire harnesses are usually assembled manually, which creates unergonomic and tedious working conditions for operators. Traditional and collaborative industrial robots have been identified as possible solutions to overcome challenges faced by operators in this type of assembly. The international research community has proposed many solutions for automating the assembly of wire harnesses in automotive vehicles but despite these solutions, the industry has not been able to adopt a method to automate this assembly process fully or partially. This paper presents a review of findings on robot-assisted wire harness assembly processes based on a systematic literature review. Specifically, the assembly of wire harnesses in Electric Vehicles (EVs). The state-of-the-art review focuses on solutions to improve unergonomic work situations and ensure the quality of assembly operations. Best practices and reasons for the lack of extensive implementation in automotive final assembly systems are described. Further, the paper presents suggestions based on success stories where the automation of the wire harness assembly in automotive vehicles has been realised by leveraging human-centred automation solutions. Based on the findings, this paper identifies the research for future study. The findings also indicate that there is already technology that can support the automation of wire harness assembly processes in EVs but it is crucial to identify the human aspects and the role of humans in the assembly of wire harness assembly process.File | Dimensione | Formato | |
---|---|---|---|
Review of Current Status and Future Directions for Collaborative and Semi-Automated Wire Harnesses Assembly.pdf
accesso aperto
:
Publisher’s version
Dimensione
464.73 kB
Formato
Adobe PDF
|
464.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.