Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials; this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps.

Active Truss Metamaterials: Modelling and Tuning of Band Gaps

Calegaro, Daniel;Mariani, Stefano
2023-01-01

Abstract

Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials; this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps.
2023
Acoustic Metamaterials, Hyperelasticity, Multi-Physics, Piezoelectricity, Buckling
File in questo prodotto:
File Dimensione Formato  
MSCE_2023.pdf

accesso aperto

: Publisher’s version
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1262031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact