Let G be SO°(n, 1) for n⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space (Ω , μ) , consider a measurable cocycle σ: Γ × Ω → H(κ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair (H, κ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.

On the trivializability of rank-one cocycles with an invariant field of projective measures

Savini, Alessio
2024-01-01

Abstract

Let G be SO°(n, 1) for n⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space (Ω , μ) , consider a measurable cocycle σ: Γ × Ω → H(κ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair (H, κ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.
2024
File in questo prodotto:
File Dimensione Formato  
online_pdf_EJM.pdf

Accesso riservato

: Publisher’s version
Dimensione 395.27 kB
Formato Adobe PDF
395.27 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact