The poor entrainment performance of the conventional ejector is a significant problem that makes it hard to use in proton exchange membrane fuel cell (PEMFC) systems. This study aims to evaluate the entrainment performance of a bypass ejector for a 100 kW PEMFC system. The effects of three critical geometric parameters, namely the axial position, width, and angle of the bypass inlet, on the entrainment performance are thoroughly investigated. The results demonstrate that the bypass flow exhibits a significant performance improvement in the critical mode. In contrast, the performance improvement is negligible and even negative in the subcritical mode. After careful evaluation of the entrainment performance across various stack powers, the optimal axial position, width, and angle of the bypass inlet are found to be 1.1, 2 mm, and 10°, respectively. A comparative analysis between the bypass ejector and the conventional ejector underscores a significant advantage for the former, exhibiting a remarkable 22.1 % increase in the hydrogen entrainment ratio at the stack power of 101 kW. Nevertheless, the entrainment performance of the bypass ejector diminishes when operating at low stack powers below 24 kW.

Performance investigation on the bypass ejector for a proton exchange membrane fuel cell system

Besagni G.;Mereu R.;Inzoli F.;
2024-01-01

Abstract

The poor entrainment performance of the conventional ejector is a significant problem that makes it hard to use in proton exchange membrane fuel cell (PEMFC) systems. This study aims to evaluate the entrainment performance of a bypass ejector for a 100 kW PEMFC system. The effects of three critical geometric parameters, namely the axial position, width, and angle of the bypass inlet, on the entrainment performance are thoroughly investigated. The results demonstrate that the bypass flow exhibits a significant performance improvement in the critical mode. In contrast, the performance improvement is negligible and even negative in the subcritical mode. After careful evaluation of the entrainment performance across various stack powers, the optimal axial position, width, and angle of the bypass inlet are found to be 1.1, 2 mm, and 10°, respectively. A comparative analysis between the bypass ejector and the conventional ejector underscores a significant advantage for the former, exhibiting a remarkable 22.1 % increase in the hydrogen entrainment ratio at the stack power of 101 kW. Nevertheless, the entrainment performance of the bypass ejector diminishes when operating at low stack powers below 24 kW.
2024
Computational fluid dynamics
Ejector
Hydrogen recirculation
Proton exchange membrane fuel cell
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1359431124000176-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 8.91 MB
Formato Adobe PDF
8.91 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact