Hepatotoxicity-related issues are poorly predicted during preclinical experimentation, as its relevance is limited by the inadequacy to screen all the non-physiological subclasses of the population. These pitfalls can be solved by implementing complex in vitro models of hepatic physiology and pathologies in the preclinical phase. To produce these platforms, extrusion-based bioprinting is focused on, since it allows to manufacture tridimensional cell-laden constructs with controlled geometries, in a high-throughput manner. Different bioinks, whose formulation is tailored to mimic the chemomechanical environment of hepatic steatosis, the most prevalent hepatic disorder worldwide, are proposed. Internally crosslinked alginate hydrogels are chosen as structural components of the inks. Their viscoelastic properties (G' = 512-730 Pa and G″ = 94-276 Pa, depending on frequency) are tuned to mimic those of steatotic liver tissue. Porcine hepatic ECM is introduced as a relevant biochemical cue. Sodium oleate is added to recall the accumulation of lipids in the tissue. Downstream analyses on 14-layered bioprinted structures cultured for 10 days reveal the establishment of steatotic-like features (intracellular lipid vesicles, viability decrease up to ≈50%) without needing external conditionings. The presented bioinks are thus suitable to fabricate complex models of hepatic steatosis to be implemented in a high-throughput experimental frame.

Bioinspired Bioinks for the Fabrication of Chemomechanically Relevant Standalone Disease Models of Hepatic Steatosis

Guagliano, Giuseppe;Briatico‐Vangosa, Francesco;Petrini, Paola
2024-01-01

Abstract

Hepatotoxicity-related issues are poorly predicted during preclinical experimentation, as its relevance is limited by the inadequacy to screen all the non-physiological subclasses of the population. These pitfalls can be solved by implementing complex in vitro models of hepatic physiology and pathologies in the preclinical phase. To produce these platforms, extrusion-based bioprinting is focused on, since it allows to manufacture tridimensional cell-laden constructs with controlled geometries, in a high-throughput manner. Different bioinks, whose formulation is tailored to mimic the chemomechanical environment of hepatic steatosis, the most prevalent hepatic disorder worldwide, are proposed. Internally crosslinked alginate hydrogels are chosen as structural components of the inks. Their viscoelastic properties (G' = 512-730 Pa and G″ = 94-276 Pa, depending on frequency) are tuned to mimic those of steatotic liver tissue. Porcine hepatic ECM is introduced as a relevant biochemical cue. Sodium oleate is added to recall the accumulation of lipids in the tissue. Downstream analyses on 14-layered bioprinted structures cultured for 10 days reveal the establishment of steatotic-like features (intracellular lipid vesicles, viability decrease up to ≈50%) without needing external conditionings. The presented bioinks are thus suitable to fabricate complex models of hepatic steatosis to be implemented in a high-throughput experimental frame.
2024
ECM
NAFLD
alginate
bioprinting
in vitro models
File in questo prodotto:
File Dimensione Formato  
Adv Healthcare Materials - 2024 - Guagliano - Bioinspired Bioinks for the Fabrication of Chemomechanically Relevant (2).pdf

Accesso riservato

Descrizione: Main text
: Publisher’s version
Dimensione 7.58 MB
Formato Adobe PDF
7.58 MB Adobe PDF   Visualizza/Apri
adhm202303349-sup-0001-suppmat.pdf

Accesso riservato

Descrizione: Supporting information
: Publisher’s version
Dimensione 958.15 kB
Formato Adobe PDF
958.15 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261463
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact