The impact of formation flying on interferometry is growing over the years for the potential performance it could offer. However, it is still an open field, and many studies are still required. This article presents the basic principles behind interferometry focusing first on a single array and secondly on a formation of satellites. A sensitivity analysis is carried out to evaluate how the performance of the interferometry is affected by an error in the relative position in the formation geometry. This is estimated by computing the loss of the performance in terms of percentage deviation due to a non-nominal relative trajectory, including two-dimensional errors and defining a payload index. The main goal of this study is to estimate whether some errors in the relative state are more impacting than others. The final objective is to compute the link between a position error and a specific loss of performance, to foresee the origin of the the error. Furthermore, a dynamical model is developed to describe the relative motion in the Low Earth Orbit environment, considering both the unperturbed and the J2 and drag contributions. A Proportional, Integral and Derivative controller is implemented for the position control of a multiple satellite formation flying, considering a low thrust control profile. The Formation Flying L-band Aperture Synthesis study is taken as the case scenario, analysing both nominal and non-nominal configurations. This study serves as a starting point for the development of a combined tool to assess the performance of the interferometry and the control on the relative state for future remote sensing studies involving relative motion.

Robustness analysis and station-keeping control of an interferometer formation flying mission in low Earth orbit

Scala, Francesca;Colombo, Camilla
2024-01-01

Abstract

The impact of formation flying on interferometry is growing over the years for the potential performance it could offer. However, it is still an open field, and many studies are still required. This article presents the basic principles behind interferometry focusing first on a single array and secondly on a formation of satellites. A sensitivity analysis is carried out to evaluate how the performance of the interferometry is affected by an error in the relative position in the formation geometry. This is estimated by computing the loss of the performance in terms of percentage deviation due to a non-nominal relative trajectory, including two-dimensional errors and defining a payload index. The main goal of this study is to estimate whether some errors in the relative state are more impacting than others. The final objective is to compute the link between a position error and a specific loss of performance, to foresee the origin of the the error. Furthermore, a dynamical model is developed to describe the relative motion in the Low Earth Orbit environment, considering both the unperturbed and the J2 and drag contributions. A Proportional, Integral and Derivative controller is implemented for the position control of a multiple satellite formation flying, considering a low thrust control profile. The Formation Flying L-band Aperture Synthesis study is taken as the case scenario, analysing both nominal and non-nominal configurations. This study serves as a starting point for the development of a combined tool to assess the performance of the interferometry and the control on the relative state for future remote sensing studies involving relative motion.
2024
File in questo prodotto:
File Dimensione Formato  
ERBEC01-24.pdf

Accesso riservato

: Publisher’s version
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact