Abstract Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250 eV-2 keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 1 keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250 eV, the QE is larger than 55% for all sensor variations, while the charge collection efficiency is close to 100%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively.

Characterization of iLGADs using soft X-rays

Borghi G.;
2023-01-01

Abstract

Abstract Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250 eV-2 keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 1 keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250 eV, the QE is larger than 55% for all sensor variations, while the charge collection efficiency is close to 100%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively.
2023
Charge transport and multiplication in solid media
Hybrid detectors
Solid state detectors
X-ray detectors
File in questo prodotto:
File Dimensione Formato  
Liguori_2023_Characterization of iLGADs using soft X-rays.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact