Data-driven models trained in an end-to-end manner can reliably detect events within optical signals. Unfortunately, event detection models poorly generalize when monitoring signals collected from devices with different acquisition procedures. We overcome this limitation by presenting a novel domain adaptation solution for event detection networks that enables inference across multiple types of devices. Rather than training a black-box detection network, we decouple event localization and classification tasks. Localization is performed by the Interval Proposal Algorithm (IPA), which leverages signal processing techniques to localize candidate events and derive context features. These events are then standardized and fed to a feature extractor to obtain morphological features. By combining domain-specific context features with domain-invariant morphological features, the classifier achieves good generalization capabilities through different domains. Our method can successfully detect events in OTDR traces achieving a mAP@0.5 of 75.33% on traces from the source domain and generalizing well (mAP@0.5 of 69.27%) on traces from the target domain, despite being trained solely from the source domain.

Event Detection in Optical Signals via Domain Adaptation

Rizzo A. M.;Magri L.;Aquaro G.;Alippi C.;Boracchi G.
2023-01-01

Abstract

Data-driven models trained in an end-to-end manner can reliably detect events within optical signals. Unfortunately, event detection models poorly generalize when monitoring signals collected from devices with different acquisition procedures. We overcome this limitation by presenting a novel domain adaptation solution for event detection networks that enables inference across multiple types of devices. Rather than training a black-box detection network, we decouple event localization and classification tasks. Localization is performed by the Interval Proposal Algorithm (IPA), which leverages signal processing techniques to localize candidate events and derive context features. These events are then standardized and fed to a feature extractor to obtain morphological features. By combining domain-specific context features with domain-invariant morphological features, the classifier achieves good generalization capabilities through different domains. Our method can successfully detect events in OTDR traces achieving a mAP@0.5 of 75.33% on traces from the source domain and generalizing well (mAP@0.5 of 69.27%) on traces from the target domain, despite being trained solely from the source domain.
2023
European Signal Processing Conference
domain adaptation
event-detection
otdr
File in questo prodotto:
File Dimensione Formato  
2023_02_Eusipco_OTDR_Adaptation (1).pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact