Continuous data generation over time presents new challenges for Machine Learning systems, which must develop real-time models due to memory and latency limitations. Streaming Machine Learning algorithms analyze data streams one sample at a time, progressively updating their models. However, is it necessary to utilize all the data for model updates? This paper introduces the Online Ensemble SPaced Learning (OE-SPL) strategy, an ensemble meta-strategy that combines online ensemble learning and the Spaced Learning heuristic to rapidly learn underlying concepts without using all samples. We evaluated OE-SPL on synthetic and real data streams containing various concept drifts, providing statistical evidence that OE-SPL achieves comparable performance to state-of-the-art ensemble models while recovering from multiple concept drift occurrences more efficiently, using less time and RAM-Hours.

Choosing the Right Time to Learn Evolving Data Streams

Bernardo, Alessio;Valle, Emanuele Della;
2023-01-01

Abstract

Continuous data generation over time presents new challenges for Machine Learning systems, which must develop real-time models due to memory and latency limitations. Streaming Machine Learning algorithms analyze data streams one sample at a time, progressively updating their models. However, is it necessary to utilize all the data for model updates? This paper introduces the Online Ensemble SPaced Learning (OE-SPL) strategy, an ensemble meta-strategy that combines online ensemble learning and the Spaced Learning heuristic to rapidly learn underlying concepts without using all samples. We evaluated OE-SPL on synthetic and real data streams containing various concept drifts, providing statistical evidence that OE-SPL achieves comparable performance to state-of-the-art ensemble models while recovering from multiple concept drift occurrences more efficiently, using less time and RAM-Hours.
2023
2023 IEEE International Conference on Big Data (BigData)
979-8-3503-2446-4
SML, Spaced Learning, Online Ensemble Learning, Constrained Environment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact