We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending on a small parameter in front of the second order term. Through the nonlinear semigroup associated with such equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its solutions, depending on the small parameter. We show that a large deviations principle holds and we give an explicit description of the action functional.

NONLINEAR RANDOM PERTURBATIONS OF PDES AND QUASI-LINEAR EQUATIONS IN HILBERT SPACES DEPENDING ON A SMALL PARAMETER

S. Cerrai;G. Guatteri;G. Tessitore
2024-01-01

Abstract

We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending on a small parameter in front of the second order term. Through the nonlinear semigroup associated with such equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its solutions, depending on the small parameter. We show that a large deviations principle holds and we give an explicit description of the action functional.
2024
Infinite dimensions, random perturbations
File in questo prodotto:
File Dimensione Formato  
Quasilinear_JFA.pdf

Open Access dal 09/04/2025

Descrizione: Versione inviata
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 471.9 kB
Formato Adobe PDF
471.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1260761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact