Incorporating lithium metal anodes in next-generation batteries promises enhanced energy densities. However, lithium's reactivity results in the formation of a native surface film, affecting battery performance. Therefore, precisely controlling the chemical and morphological surface condition of lithium metal anodes is imperative for producing high-performance lithium metal batteries. This study demonstrates the efficacy of laser treatment for removing superficial contaminants from lithium metal substrates. To this end, picosecond-pulsed laser radiation is proposed for modifying the surface of lithium metal substrates. Scanning electron microscopy (SEM) revealed that different laser process regimes can be exploited to achieve a wide spectrum of surface morphologies. Energy-dispersive X-ray spectroscopy (EDX) confirmed substantial reductions of ≈80% in oxidic and carbonaceous surface species. The contamination layer removal translated into interfacial resistance reductions of 35% and 44% when testing laser-cleaned lithium metal anodes in symmetric all-solid-state batteries (ASSBs) with lithium phosphorus sulfur chloride (LPSCl) and lithium lanthanum zirconium oxide (LLZO) solid electrolytes, respectively. Finally, a framework for integrating laser cleaning into industrial battery production is suggested, evidencing the industrial feasibility of the approach. In summary, this work advances the understanding of lithium metal surface treatments and serves as proof of principle for its industrial applicability.

Surface Reconditioning of Lithium Metal Electrodes by Laser Treatment for the Industrial Production of Enhanced Lithium Metal Batteries

Serge Dib;Ali Gokhan Demir;
2024-01-01

Abstract

Incorporating lithium metal anodes in next-generation batteries promises enhanced energy densities. However, lithium's reactivity results in the formation of a native surface film, affecting battery performance. Therefore, precisely controlling the chemical and morphological surface condition of lithium metal anodes is imperative for producing high-performance lithium metal batteries. This study demonstrates the efficacy of laser treatment for removing superficial contaminants from lithium metal substrates. To this end, picosecond-pulsed laser radiation is proposed for modifying the surface of lithium metal substrates. Scanning electron microscopy (SEM) revealed that different laser process regimes can be exploited to achieve a wide spectrum of surface morphologies. Energy-dispersive X-ray spectroscopy (EDX) confirmed substantial reductions of ≈80% in oxidic and carbonaceous surface species. The contamination layer removal translated into interfacial resistance reductions of 35% and 44% when testing laser-cleaned lithium metal anodes in symmetric all-solid-state batteries (ASSBs) with lithium phosphorus sulfur chloride (LPSCl) and lithium lanthanum zirconium oxide (LLZO) solid electrolytes, respectively. Finally, a framework for integrating laser cleaning into industrial battery production is suggested, evidencing the industrial feasibility of the approach. In summary, this work advances the understanding of lithium metal surface treatments and serves as proof of principle for its industrial applicability.
2024
File in questo prodotto:
File Dimensione Formato  
Surface Reconditioning of Lithium Metal Electrodes by Laser Treatment for the Industrial Production of Enhanced Lithium Metal Batteries.pdf

accesso aperto

: Publisher’s version
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1260760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact