Recently, direct-writing electrospinning has been pursued to reach a higher accuracy and complexity in fiber scaffold fabrication compared to other extrusion techniques more frequently encountered in tissue engineering. However, to date, direct-writing electrospinning lacks a wide application to process materials such as nature-derived polymers, of huge importance in tissue engineering given their chemical properties similar to that of native tissues. In this work, a setup to perform direct-writing electrospinning was developed and demonstrated versatility and efficiency in obtaining submicrometric fibers and guiding their deposition along various types of paths and patterns, resulting in a user-friendly method to create structures closely resembling tissue architecture.
A direct-writing electrospinning system for designing complex architectures in tissue engineering
L. Armenio;S. Fare';L. Draghi
2024-01-01
Abstract
Recently, direct-writing electrospinning has been pursued to reach a higher accuracy and complexity in fiber scaffold fabrication compared to other extrusion techniques more frequently encountered in tissue engineering. However, to date, direct-writing electrospinning lacks a wide application to process materials such as nature-derived polymers, of huge importance in tissue engineering given their chemical properties similar to that of native tissues. In this work, a setup to perform direct-writing electrospinning was developed and demonstrated versatility and efficiency in obtaining submicrometric fibers and guiding their deposition along various types of paths and patterns, resulting in a user-friendly method to create structures closely resembling tissue architecture.File | Dimensione | Formato | |
---|---|---|---|
Armenio_2024_Biomed._Phys._Eng._Express_10_027001 (1).pdf
accesso aperto
:
Publisher’s version
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.