Carbon capture, utilisation, and sequestration is key for the decarbonisation of hard-to-abate industries, as it allows avoiding the direct release of CO2 to the atmosphere and generating carbon-based products. However, for these products to be truly carbon-neutral, intermittent renewable electricity must be deployed at scale, leading to the necessity of optimising flexible plants with potential for local buffer storages, geological sequestration, and conversion units. The scope of this work is to provide a mathematical framework for the economic optimisation of a carbon capture, utilisation, and sequestration system, to decarbonise a cement plant located in the Puglia region (Italy), via CO2 geological confinement and/or power and CO2-to-methanol conversion. The final aim is to determine the optimal sizing and cost of the process units of the plant, depending on economic conditions such as the methanol sale price and different perspective costs scenarios. The main outcome is an economic convenience of geological sequestration, as opposed to utilisation, while a long-term scenario would allow for a cost-effective production of methanol when the sale price is above 550 EUR/t.

A Mathematical Tool for Optimising Carbon Capture, Utilisation and Sequestration Plants for e-MeOH Production

d'Amore Federico;Colbertaldo Paolo;Romano Matteo Carmelo
2023-01-01

Abstract

Carbon capture, utilisation, and sequestration is key for the decarbonisation of hard-to-abate industries, as it allows avoiding the direct release of CO2 to the atmosphere and generating carbon-based products. However, for these products to be truly carbon-neutral, intermittent renewable electricity must be deployed at scale, leading to the necessity of optimising flexible plants with potential for local buffer storages, geological sequestration, and conversion units. The scope of this work is to provide a mathematical framework for the economic optimisation of a carbon capture, utilisation, and sequestration system, to decarbonise a cement plant located in the Puglia region (Italy), via CO2 geological confinement and/or power and CO2-to-methanol conversion. The final aim is to determine the optimal sizing and cost of the process units of the plant, depending on economic conditions such as the methanol sale price and different perspective costs scenarios. The main outcome is an economic convenience of geological sequestration, as opposed to utilisation, while a long-term scenario would allow for a cost-effective production of methanol when the sale price is above 550 EUR/t.
2023
Proceedings of 2nd International Conference on Energy, Environment & Digital Transition (E2DT 2023)
979-12-81206-04-5
File in questo prodotto:
File Dimensione Formato  
030.pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact