Optical wireless links, namely Free-Space Optics (FSO), and mmWave links, appear to meet the high-capacity requirements for backhauling in the next-generation communications systems. However, wireless links at such high frequencies are susceptible to weather conditions. Specifically, FSO is severely affected by fog attenuation, while mmWaves struggle through the rain. Moreover, the theory predicts that the impact of rain on FSO is not as significant as on mmWaves, due to the forward scattering gain. Two mmWave links (at E- and D-band, respectively) and a near-IR FSO link have been deployed across an 800-m path in Milan, Italy, to study those effects. The experimental setup also includes weather sensors (disdrometers and visibilimeters) on either side of the path. Results collected during an 8-hour rainy event are presented here. FSO attenuation (in dB) is around 50% of mmWave attenuation at a peak rainfall rate of 20 mm/h.

mmWave vs FSO Propagation: First Results from an Experimental Testbed in Italy

Luini, L.;Riva, C.;Galzerano, G.;Resteghini, L.;Mazzucco, C.;
2023-01-01

Abstract

Optical wireless links, namely Free-Space Optics (FSO), and mmWave links, appear to meet the high-capacity requirements for backhauling in the next-generation communications systems. However, wireless links at such high frequencies are susceptible to weather conditions. Specifically, FSO is severely affected by fog attenuation, while mmWaves struggle through the rain. Moreover, the theory predicts that the impact of rain on FSO is not as significant as on mmWaves, due to the forward scattering gain. Two mmWave links (at E- and D-band, respectively) and a near-IR FSO link have been deployed across an 800-m path in Milan, Italy, to study those effects. The experimental setup also includes weather sensors (disdrometers and visibilimeters) on either side of the path. Results collected during an 8-hour rainy event are presented here. FSO attenuation (in dB) is around 50% of mmWave attenuation at a peak rainfall rate of 20 mm/h.
2023
IRMMW-THz 2023
979-8-3503-3660-3
File in questo prodotto:
File Dimensione Formato  
mmWave_vs_FSO_Propagation_First_Results_from_an_Experimental_Testbed_in_Italy.pdf

Accesso riservato

Descrizione: articolo
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 292.92 kB
Formato Adobe PDF
292.92 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact