This paper highlights the effectiveness of photo-thermal plasmonic sensors in enabling real-time closed-loop stabilization of photonic devices. To assess the waveguided optical power, the in-line detector leverages the photo-thermal resistance variation of a micrometric plasmonic strip in contact with the waveguide. The generated signal is used to lock to resonance a ring resonator against wavelength and temperature variations, in a silicon-based technology. Thanks to the high sensitivity of the detector and its limited penalty on the waveguide loss, automatic re-tuning of the ring resonator with a recovery time of 20ms has been successfully achieved. The micrometric dimensions of the sensor, its technological simplicity, and the delivered signal (proportional to the optical power) make the photo-thermal plasmonic sensor an attractive in-line candidate for closed-loop control of optical devices, regardless of the technology employed for the photonic chip fabrication.

Closed-loop control of photonic ring resonators by means of photo-thermal plasmonic sensors

Tria, Alessandro di;Martinez, Andres;Grimaldi, Vittorio;Zanetto, Francesco;Bongiorno, Sergio;Melloni, Andrea;Morichetti, Francesco;Ferrari, Giorgio;Sampietro, Marco
2024-01-01

Abstract

This paper highlights the effectiveness of photo-thermal plasmonic sensors in enabling real-time closed-loop stabilization of photonic devices. To assess the waveguided optical power, the in-line detector leverages the photo-thermal resistance variation of a micrometric plasmonic strip in contact with the waveguide. The generated signal is used to lock to resonance a ring resonator against wavelength and temperature variations, in a silicon-based technology. Thanks to the high sensitivity of the detector and its limited penalty on the waveguide loss, automatic re-tuning of the ring resonator with a recovery time of 20ms has been successfully achieved. The micrometric dimensions of the sensor, its technological simplicity, and the delivered signal (proportional to the optical power) make the photo-thermal plasmonic sensor an attractive in-line candidate for closed-loop control of optical devices, regardless of the technology employed for the photonic chip fabrication.
2024
File in questo prodotto:
File Dimensione Formato  
Closed_loop_Control_of_Photonic_Ring_Resonators_by_means_of_Photo_Thermal_Plasmonic_Sensors.pdf

Open Access dal 02/01/2025

Descrizione: Articolo
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact