In the last years, additive manufacturing has become a widespread technology which enables lightweight-design based on topological optimization. Therefore, generation of lattice structures with complex geometries and small thicknesses is allowed. However, a complete metallurgical and mechanical characterization of these materials is crucial for their effective adoption as alternative to conventionally manufactured alloys. Industrial applications require good corrosion resistance and mechanical strength to provide sufficient reliability and structural integrity. Particularly, fatigue behavior becomes a crucial factor since presence of poor surface finishing can decrease fatigue limits significantly. In this work, both the low-cycle-fatigue and high-cycle-fatigue behaviors of Inconel 625, manufactured by Selective Laser Melting, were investigated. Fatigue samples were designed to characterize small parts and tested in the as-built condition since reticular structures are usually adopted without any finishing operation. Microstructural features were studied by light-optical microscopy and scanning-electron microscopy. Finally, fatigue failures were deeply investigated considering fracture mechanics principles with the Kitagawa-Takahashi diagram.

High- and low-cycle-fatigue properties of additively manufactured Inconel 625

Gerosa, Riccardo;Panzeri, Davide;
2024-01-01

Abstract

In the last years, additive manufacturing has become a widespread technology which enables lightweight-design based on topological optimization. Therefore, generation of lattice structures with complex geometries and small thicknesses is allowed. However, a complete metallurgical and mechanical characterization of these materials is crucial for their effective adoption as alternative to conventionally manufactured alloys. Industrial applications require good corrosion resistance and mechanical strength to provide sufficient reliability and structural integrity. Particularly, fatigue behavior becomes a crucial factor since presence of poor surface finishing can decrease fatigue limits significantly. In this work, both the low-cycle-fatigue and high-cycle-fatigue behaviors of Inconel 625, manufactured by Selective Laser Melting, were investigated. Fatigue samples were designed to characterize small parts and tested in the as-built condition since reticular structures are usually adopted without any finishing operation. Microstructural features were studied by light-optical microscopy and scanning-electron microscopy. Finally, fatigue failures were deeply investigated considering fracture mechanics principles with the Kitagawa-Takahashi diagram.
2024
Selective Laser Melting
High cycle fatigue
Low cycle fatigue
Inconel 625
Defects
Fractography
File in questo prodotto:
File Dimensione Formato  
manuscript_revised.pdf

Accesso riservato

Descrizione: Manuscript pre-print
: Pre-Print (o Pre-Refereeing)
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact