Low-thrust propulsion systems are widely used in space missions due to their high specific impulse and reduced propellant consumption. However, current research focuses on eliminating drifts in low-thrust maneuvers, resulting in high operational costs for daily station-keeping. This study aims to achieve autonomous station-keeping by exploiting long-term periodic behaviors caused by geostationary resonances. First, resonance maps caused by the Earth's gravity and lunisolar perturbation are revisited. Then, station-keeping slots are selected based on a phase space study of the resonances. A closed station-keeping track is formed by designing a low-thrust arc to work with the drifting arc. This track moves along the edge of the station-keeping slot, providing a more extended control period and reducing ground-station operational costs. Finally, an indirect optimizing method and efficient initial costate guess technique are proposed for calculating low-thrust maneuvers.

Low-Thrust Station-Keeping Strategy toward Exploiting the Resonances in the Geostationary Region

Colombo, Camilla;
2024-01-01

Abstract

Low-thrust propulsion systems are widely used in space missions due to their high specific impulse and reduced propellant consumption. However, current research focuses on eliminating drifts in low-thrust maneuvers, resulting in high operational costs for daily station-keeping. This study aims to achieve autonomous station-keeping by exploiting long-term periodic behaviors caused by geostationary resonances. First, resonance maps caused by the Earth's gravity and lunisolar perturbation are revisited. Then, station-keeping slots are selected based on a phase space study of the resonances. A closed station-keeping track is formed by designing a low-thrust arc to work with the drifting arc. This track moves along the edge of the station-keeping slot, providing a more extended control period and reducing ground-station operational costs. Finally, an indirect optimizing method and efficient initial costate guess technique are proposed for calculating low-thrust maneuvers.
2024
File in questo prodotto:
File Dimensione Formato  
LILIN01-24.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact