State of Charge (SOC) estimation is vital for battery management systems (BMS), impacting battery efficiency and lifespan. Accurate SOC estimation is challenging due to battery complexity and limited data for training Machine Learning based models. Transfer learning (TL) leverages pre-trained models, reducing training time and improving generalization in SOC estimation. In this paper, 8 different transfer learning techniques are examined, which were applied in four different models (LSTM, GRU, BiLSTM, and BiGRU) for SOC estimation. These transfer learning techniques have been applied to three datasets for re-training the models and results have been compared with the same models defined by Bayesian Hyperparameter Optimization. The TL4 and TL5 techniques consistently stood out as among the most efficient in both accuracy and computational time.
Transfer Learning Techniques for the Lithium-Ion Battery State of Charge Estimation
Eleftheriadis P.;Giazitzis S.;Leva S.;Ogliari E.
2024-01-01
Abstract
State of Charge (SOC) estimation is vital for battery management systems (BMS), impacting battery efficiency and lifespan. Accurate SOC estimation is challenging due to battery complexity and limited data for training Machine Learning based models. Transfer learning (TL) leverages pre-trained models, reducing training time and improving generalization in SOC estimation. In this paper, 8 different transfer learning techniques are examined, which were applied in four different models (LSTM, GRU, BiLSTM, and BiGRU) for SOC estimation. These transfer learning techniques have been applied to three datasets for re-training the models and results have been compared with the same models defined by Bayesian Hyperparameter Optimization. The TL4 and TL5 techniques consistently stood out as among the most efficient in both accuracy and computational time.File | Dimensione | Formato | |
---|---|---|---|
Transfer_Learning_Techniques_for_the_Lithium-Ion_Battery_State_of_Charge_Estimation.pdf
accesso aperto
Descrizione: paper finale
:
Publisher’s version
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.