Optical rectification (OR) at the nanoscale has attracted an increasing interest in the prospect of providing efficient ultracompact terahertz (THz) sources. Here, a universal modeling approach capable of addressing both isotropic and anisotropic all-dielectric nonlinear nanomaterials on an ultra-broad spectral range, covering the highly dispersive phonon-polariton window, and different orientations of the crystallographic axes with respect to the geometry of the structure is reported. This analysis is exemplified by considering two study cases, that is, nanopillars of AlGaAs and of LiNbO3. A close comparison between the two cases is established in terms of THz generation efficiency from 4 to 14 THz. Phonon-polariton contributions to the OR process are disentangled from the electronic one, and a model order reduction based on the reciprocity theorem is applied and validated on both the considered configurations. These results, combined with the inspection of the THz near-field features, pave the way to the design and optimization of nonlinear metasurfaces for THz generation and detection at the nanoscale.

THz Generation via Optical Rectification in Nanomaterials: Universal Modeling Approach and Effective χ(2) Description

Arregui Leon, Unai;Della Valle, Giuseppe
2024-01-01

Abstract

Optical rectification (OR) at the nanoscale has attracted an increasing interest in the prospect of providing efficient ultracompact terahertz (THz) sources. Here, a universal modeling approach capable of addressing both isotropic and anisotropic all-dielectric nonlinear nanomaterials on an ultra-broad spectral range, covering the highly dispersive phonon-polariton window, and different orientations of the crystallographic axes with respect to the geometry of the structure is reported. This analysis is exemplified by considering two study cases, that is, nanopillars of AlGaAs and of LiNbO3. A close comparison between the two cases is established in terms of THz generation efficiency from 4 to 14 THz. Phonon-polariton contributions to the OR process are disentangled from the electronic one, and a model order reduction based on the reciprocity theorem is applied and validated on both the considered configurations. These results, combined with the inspection of the THz near-field features, pave the way to the design and optimization of nonlinear metasurfaces for THz generation and detection at the nanoscale.
2024
all-dielectric nanoantennas
difference-frequency generation
localized phonon-polaritons
nonlinear nanophotonics
THz sources
File in questo prodotto:
File Dimensione Formato  
Arregui_Leon_LPR_2024.pdf

accesso aperto

: Publisher’s version
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact