In this paper we provide a local well posedness result for a quasilinear beam-wave system of equations on a one-dimensional spatial domain under periodic and Dirichlet boundary conditions. This kind of systems provides a refined model for the time-evolution of suspension bridges, where the beam and wave equations describe respectively the longitudinal and torsional motion of the deck. The quasilinearity arises when one takes into account the nonlinear restoring action of deformable cables and hangers. To obtain the a priori estimates for the solutions of the linearized equation we build a modified energy by means of paradifferential changes of variables. Then we construct the solutions of the nonlinear problem by using a quasilinear iterative scheme à la Kato.

Local well posedness for a system of quasilinear PDEs modelling suspension bridges

Giuliani F.;
2024-01-01

Abstract

In this paper we provide a local well posedness result for a quasilinear beam-wave system of equations on a one-dimensional spatial domain under periodic and Dirichlet boundary conditions. This kind of systems provides a refined model for the time-evolution of suspension bridges, where the beam and wave equations describe respectively the longitudinal and torsional motion of the deck. The quasilinearity arises when one takes into account the nonlinear restoring action of deformable cables and hangers. To obtain the a priori estimates for the solutions of the linearized equation we build a modified energy by means of paradifferential changes of variables. Then we construct the solutions of the nonlinear problem by using a quasilinear iterative scheme à la Kato.
2024
File in questo prodotto:
File Dimensione Formato  
FGIM_Nonlin.pdf

Accesso riservato

Dimensione 702.03 kB
Formato Adobe PDF
702.03 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact