By extending to the stochastic setting the classical vanishing viscosity approach we prove the existence of suitably weak solutions of a class of nonlinear stochastic evolution equation of rate-independent type. Approximate solutions are obtained via viscous regularization. Upon properly rescaling time, these approximations converge to a parametrized martingale solution of the problem in rescaled time, where the rescaled noise is given by a general square-integrable cylindrical martingale with absolutely continuous quadratic variation. In absence of jumps, these are strong-in-time martingale solutions of the problem in the original, not rescaled time. (c) 2023 Elsevier Inc. All rights reserved.

Rate-independent stochastic evolution equations: Parametrized solutions

Scarpa L.;
2023-01-01

Abstract

By extending to the stochastic setting the classical vanishing viscosity approach we prove the existence of suitably weak solutions of a class of nonlinear stochastic evolution equation of rate-independent type. Approximate solutions are obtained via viscous regularization. Upon properly rescaling time, these approximations converge to a parametrized martingale solution of the problem in rescaled time, where the rescaled noise is given by a general square-integrable cylindrical martingale with absolutely continuous quadratic variation. In absence of jumps, these are strong-in-time martingale solutions of the problem in the original, not rescaled time. (c) 2023 Elsevier Inc. All rights reserved.
2023
Doubly nonlinear stochastic equations
Rate-independence
Martingale solutions
Parametrized solutions
File in questo prodotto:
File Dimensione Formato  
SS-JFA.pdf

Accesso riservato

: Publisher’s version
Dimensione 722.81 kB
Formato Adobe PDF
722.81 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact