Optical stimulation and control of muscle cell contraction opens up a number of interesting applications in hybrid robotic and medicine. Here we show that recently designed molecular phototransducer can be used to stimulate C2C12 skeletal muscle cells, properly grown to exhibit collective behaviour. C2C12 is a skeletal muscle cell line that does not require animal sacrifice Furthermore, it is an ideal cell model for evaluating the phototransducer pacing ability due to its negligible spontaneous activity. We study the stimulation process and analyse the distribution of responses in multinuclear cells, in particular looking at the consistency between stimulus and contraction. Contractions are detected by using an imaging software for object recognition. We find a deterministic response to light stimuli, yet with a certain distribution of erratic behaviour that is quantified and correlated to light intensity or stimulation frequency. Finally, we compare our optical stimulation with electrical stimulation showing advantages of the optical approach, like the reduced cell stress.A study on the stimulation of cells with light, thanks to a photochromic molecule, called Ziapin2. It shows the difference between the light stimulation and the electrical stimulation in terms of cell viability and performance.

Skeletal muscle cells opto-stimulation by intramembrane molecular transducers

Venturino, Ilaria;Vurro, Vito;Bonfadini, Silvio;Perotto, Sara;Sesti, Valentina;Bertarelli, Chiara;Lanzani, Guglielmo
2023-01-01

Abstract

Optical stimulation and control of muscle cell contraction opens up a number of interesting applications in hybrid robotic and medicine. Here we show that recently designed molecular phototransducer can be used to stimulate C2C12 skeletal muscle cells, properly grown to exhibit collective behaviour. C2C12 is a skeletal muscle cell line that does not require animal sacrifice Furthermore, it is an ideal cell model for evaluating the phototransducer pacing ability due to its negligible spontaneous activity. We study the stimulation process and analyse the distribution of responses in multinuclear cells, in particular looking at the consistency between stimulus and contraction. Contractions are detected by using an imaging software for object recognition. We find a deterministic response to light stimuli, yet with a certain distribution of erratic behaviour that is quantified and correlated to light intensity or stimulation frequency. Finally, we compare our optical stimulation with electrical stimulation showing advantages of the optical approach, like the reduced cell stress.A study on the stimulation of cells with light, thanks to a photochromic molecule, called Ziapin2. It shows the difference between the light stimulation and the electrical stimulation in terms of cell viability and performance.
2023
File in questo prodotto:
File Dimensione Formato  
s42003-023-05538-y.pdf

accesso aperto

Descrizione: Main text
: Publisher’s version
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258518
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact