Auxetic materials have recently attracted interest in the field of crashworthiness thanks to their peculiar negative Poisson ratio, leading to densification under compression and potentially being the basis of superior behavior upon impact with respect to conventional cellular cores or standard solutions. However, the empirical demonstration of the applicability of auxeticity under impact is limited for most known geometries. As such, the present work strives to advance the investigation of the impact behavior of auxetic meta-materials: first by selecting and testing representative specimens, then by proceeding with an experimental and numerical study of repeated impact behavior and penetration resistance, and finally by proposing a new design of a metallic auxetic absorber optimized for additive manufacturing and targeted at high-performance crash applications.
Crashworthiness of Additively Manufactured Auxetic Lattices: Repeated Impacts and Penetration Resistance
Colamartino, Ivan;Giustina, Alessandro;Anghileri, Marco;Boniardi, Marco
2024-01-01
Abstract
Auxetic materials have recently attracted interest in the field of crashworthiness thanks to their peculiar negative Poisson ratio, leading to densification under compression and potentially being the basis of superior behavior upon impact with respect to conventional cellular cores or standard solutions. However, the empirical demonstration of the applicability of auxeticity under impact is limited for most known geometries. As such, the present work strives to advance the investigation of the impact behavior of auxetic meta-materials: first by selecting and testing representative specimens, then by proceeding with an experimental and numerical study of repeated impact behavior and penetration resistance, and finally by proposing a new design of a metallic auxetic absorber optimized for additive manufacturing and targeted at high-performance crash applications.File | Dimensione | Formato | |
---|---|---|---|
FRANP01-24.pdf
accesso aperto
:
Publisher’s version
Dimensione
11.69 MB
Formato
Adobe PDF
|
11.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.