Impression-aware recommender systems (IARS) are a type of recommenders that learn user preferences using their interactions and the recommendations (also known as impressions) shown to users. The community’s interest in this type of recommenders has steadily increased in recent years. To aid in characterizing this type of recommenders, we propose a theoretical framework to define IARS and classify the recommenders present in the state-of-the-art. We start this work by defining core concepts related to this type of recommenders, such as impressions and user feedback. Based on this theoretical framework, we identify and define three properties and three taxonomies that characterize IARS. Lastly, we undergo a systematic literature review where we discover and select papers belonging to the state-of-the-art. Our review analyzes papers under the properties and taxonomies we propose; we highlight the most and least common properties and taxonomies used in the literature, their relations, and their evolution over time, among others.

Characterizing Impression-Aware Recommender Systems

Perez Maurera F. B.;Ferrari Dacrema M.;Cremonesi P.
2023-01-01

Abstract

Impression-aware recommender systems (IARS) are a type of recommenders that learn user preferences using their interactions and the recommendations (also known as impressions) shown to users. The community’s interest in this type of recommenders has steadily increased in recent years. To aid in characterizing this type of recommenders, we propose a theoretical framework to define IARS and classify the recommenders present in the state-of-the-art. We start this work by defining core concepts related to this type of recommenders, such as impressions and user feedback. Based on this theoretical framework, we identify and define three properties and three taxonomies that characterize IARS. Lastly, we undergo a systematic literature review where we discover and select papers belonging to the state-of-the-art. Our review analyzes papers under the properties and taxonomies we propose; we highlight the most and least common properties and taxonomies used in the literature, their relations, and their evolution over time, among others.
2023
CEUR Workshop Proceedings
Exposure
Impression
Recommender Systems
Slate
Taxonomy
File in questo prodotto:
File Dimensione Formato  
characterizing-impression-aware-recommender-systems.pdf

accesso aperto

: Publisher’s version
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact