The theory of quantum jump trajectories provides a new framework for understanding dynamical phase transitions in open systems. A candidate for such transitions is the atom maser, which for certain parameters exhibits strong intermittency in the atom detection counts and has a bistable stationary state. Although previous numerical results suggested that the "free energy"may not be a smooth function, we show that the atom detection counts satisfy a large deviations principle and, therefore, we deal with a phase crossover rather than a genuine phase transition. We argue, however, that the latter occurs in the limit of an infinite pumping rate. As a corollary, we obtain the central limit theorem for the counting process. The proof relies on the analysis of a certain deformed generator whose spectral bound is the limiting cumulant generating function. The latter is shown to be smooth so that a large deviations principle holds by the Gärtner-Ellis theorem. One of the main ingredients is the Krein-Rutman theory, which extends the Perron-Frobenius theorem to a general class of positive compact semigroups.

Large deviations, central limit, and dynamical phase transitions in the atom maser

Girotti F.;Carbone R.;Guta M.
2022-01-01

Abstract

The theory of quantum jump trajectories provides a new framework for understanding dynamical phase transitions in open systems. A candidate for such transitions is the atom maser, which for certain parameters exhibits strong intermittency in the atom detection counts and has a bistable stationary state. Although previous numerical results suggested that the "free energy"may not be a smooth function, we show that the atom detection counts satisfy a large deviations principle and, therefore, we deal with a phase crossover rather than a genuine phase transition. We argue, however, that the latter occurs in the limit of an infinite pumping rate. As a corollary, we obtain the central limit theorem for the counting process. The proof relies on the analysis of a certain deformed generator whose spectral bound is the limiting cumulant generating function. The latter is shown to be smooth so that a large deviations principle holds by the Gärtner-Ellis theorem. One of the main ingredients is the Krein-Rutman theory, which extends the Perron-Frobenius theorem to a general class of positive compact semigroups.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact