We derive new concentration bounds for time averages of measurement outcomes in quantum Markov processes. This generalizes wellknown bounds for classical Markov chains, which provide constraints on finite-time fluctuations of time-additive quantities around their averages. We employ spectral, perturbation and martingale techniques, together with non-commutative L-2 theory, to derive: (i) a Bernstein-type concentration bound for time averages of the measurement outcomes of a quantum Markov chain, (ii) a Hoeffding-type concentration bound for the same process, (iii) a generalization of the Bernstein-type concentration bound for counting processes of continuous-time quantum Markov processes, (iv) new concentration bounds for empirical fluxes of classical Markov chains which broaden the range of applicability of the corresponding classical bounds beyond empirical averages. We also suggest potential application of our results to parameter estimation and consider extensions to reducible quantum channels, multi-time statistics and time-dependent measurements, and comment on the connection to so-called thermodynamic uncertainty relations.

Concentration Inequalities for Output Statistics of Quantum Markov Processes

Federico Girotti;
2023-01-01

Abstract

We derive new concentration bounds for time averages of measurement outcomes in quantum Markov processes. This generalizes wellknown bounds for classical Markov chains, which provide constraints on finite-time fluctuations of time-additive quantities around their averages. We employ spectral, perturbation and martingale techniques, together with non-commutative L-2 theory, to derive: (i) a Bernstein-type concentration bound for time averages of the measurement outcomes of a quantum Markov chain, (ii) a Hoeffding-type concentration bound for the same process, (iii) a generalization of the Bernstein-type concentration bound for counting processes of continuous-time quantum Markov processes, (iv) new concentration bounds for empirical fluxes of classical Markov chains which broaden the range of applicability of the corresponding classical bounds beyond empirical averages. We also suggest potential application of our results to parameter estimation and consider extensions to reducible quantum channels, multi-time statistics and time-dependent measurements, and comment on the connection to so-called thermodynamic uncertainty relations.
2023
File in questo prodotto:
File Dimensione Formato  
11311-1258268_Girotti.pdf

accesso aperto

: Publisher’s version
Dimensione 590.06 kB
Formato Adobe PDF
590.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact