Nowadays, most ofthe hydrogen is obtained from fossil fuels. Atthe same time, the effort and resources dedicated to the developmentof sustainable hydrogen manufacturing processes are rapidly increasingto promote the energy transition toward renewable sources. In thisdirection, a potential source of hydrogen could be hydrogen sulfide,produced as a byproduct in several processes, and in particular inthe oil extraction and refinery operations. Methane reforming usingH(2)S has recently attracted much interest for its economicand environmental implications. Its conversion, in fact, providesa viable way for the elimination of a hazardous molecule, producinga high-added value product like hydrogen. At the same time, some ofthe still open key aspects of this process are the coke depositiondue to thermal pyrolysis of methane and the process endothermicity.In this work, the methane reforming with H2S by co-feedingsulfur is investigated through a detailed thermodynamic analysis asa way to alleviate the critical aspects highlighted for the process.A parametric analysis was conducted to assess the best thermodynamicconditions in terms of pressure, temperature, and feed composition.Changing the sulfur, H2S, and methane feed compositioncan enhance the system by improving the hydrogen production yield,reducing the carbon and sulfur deposition, increasing the H2S removal efficiency, and reducing the necessary thermal duty.

Methane Reforming with H2S and Sulfur for Hydrogen Production: Thermodynamic Assessment

Tollini, F;Sponchioni, M;Moscatelli, D
2023-01-01

Abstract

Nowadays, most ofthe hydrogen is obtained from fossil fuels. Atthe same time, the effort and resources dedicated to the developmentof sustainable hydrogen manufacturing processes are rapidly increasingto promote the energy transition toward renewable sources. In thisdirection, a potential source of hydrogen could be hydrogen sulfide,produced as a byproduct in several processes, and in particular inthe oil extraction and refinery operations. Methane reforming usingH(2)S has recently attracted much interest for its economicand environmental implications. Its conversion, in fact, providesa viable way for the elimination of a hazardous molecule, producinga high-added value product like hydrogen. At the same time, some ofthe still open key aspects of this process are the coke depositiondue to thermal pyrolysis of methane and the process endothermicity.In this work, the methane reforming with H2S by co-feedingsulfur is investigated through a detailed thermodynamic analysis asa way to alleviate the critical aspects highlighted for the process.A parametric analysis was conducted to assess the best thermodynamicconditions in terms of pressure, temperature, and feed composition.Changing the sulfur, H2S, and methane feed compositioncan enhance the system by improving the hydrogen production yield,reducing the carbon and sulfur deposition, increasing the H2S removal efficiency, and reducing the necessary thermal duty.
2023
Hydrogen
Sustainability
Methane Reforming
Hydrogen Sulfide
File in questo prodotto:
File Dimensione Formato  
Methane Reforming with H2S and Sulfur for Hydrogen Production_Thermodynamic Assessment.pdf

accesso aperto

: Publisher’s version
Dimensione 8.72 MB
Formato Adobe PDF
8.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 1
social impact