Per- and polyfluoroalkyl substances (PFAS) are used in numerous industrial applications, such as in textile manufacturing, because of their special chemical properties. To avoid PFAS spread in the environment, removal strategies need to be implemented at the wastewater treatment plants (WWTP) to reduce their environmental risk on receiving water bodies. The fate of 14 PFAS in a full-scale WWTP treating textile and civil wastewater (WW) was investigated. The addition of an adsorption step before or after the ozonation process was studied through adsorption isotherms tested on the WW collected before and after the full-scale ozonation step. Ozonation is not aimed at PFAS removing, but it lowers organic matter competition towards long-chain PFAS in the following adsorption step. The removal of UVA254 seems to be a good proxy variable for PFAS adsorption, with relationships not dependent on the presence of ozonation step.

Does ozonation enhance activated carbon adsorption of PFAS in textile wastewater?

B. Cantoni;M. Antonelli
2023-01-01

Abstract

Per- and polyfluoroalkyl substances (PFAS) are used in numerous industrial applications, such as in textile manufacturing, because of their special chemical properties. To avoid PFAS spread in the environment, removal strategies need to be implemented at the wastewater treatment plants (WWTP) to reduce their environmental risk on receiving water bodies. The fate of 14 PFAS in a full-scale WWTP treating textile and civil wastewater (WW) was investigated. The addition of an adsorption step before or after the ozonation process was studied through adsorption isotherms tested on the WW collected before and after the full-scale ozonation step. Ozonation is not aimed at PFAS removing, but it lowers organic matter competition towards long-chain PFAS in the following adsorption step. The removal of UVA254 seems to be a good proxy variable for PFAS adsorption, with relationships not dependent on the presence of ozonation step.
2023
Proc. of 26th World Congress & Exhibition “Ozone and Advanced Oxidation Leading-edge science and technologies (IOA3)
979-10-92607-09-3
Ozonation
PFAS
Textile wastewater
Adsorption
File in questo prodotto:
File Dimensione Formato  
2023 Antonelli - IOA2023 - O3 role in PFAS removal.pdf

accesso aperto

Descrizione: Extended Abstract
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 746.84 kB
Formato Adobe PDF
746.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact