Despite being reduced by treatment, natural organic matter (NOM) is ubiquitous in drinking water distribution systems (DWDSs) from sources to consumers' taps where it can potentially have negative impacts on drinking water quality. While a few studies have investigated its behaviour in disinfected and NOM-rich DWDSs, its dynamics in non-disinfected systems, characterized by low NOM content, have not yet been explored. In this study, we monitored the NOM variations occurring between groundwater sources and consumers' taps of a non-disinfected DWDS, including three drinking water treatment plants, using both fluorescence and absorbance, selected due to their increasing adoption by water utilities. PARAFAC analysis of fluorescence data, combined with absorbance indices, highlighted how NOM characteristics in groundwater vary due to the combination of multiple factors (e.g., well depth, pumping rate), especially in the case of shallower aquifers. The treatment processes display different effects on NOM when monitored by fluorescence and absorbance, due to the differences among fluorophores and between fluorescent and chromophoric molecules. Variations of the NOM characteristics between the treatment plant outlets and sampling locations within the network were detected only in few locations, suggesting the importance of the processes occurring in specific sections of the network and the last meter before consumption. These findings highlight the overall stability of water quality within non- disinfected NOM-poor DWDSs, but they stress the importance of (i) properly selecting the analytical method to be used for monitoring and (ii) localized water quality variations mainly related to pipe materials, suggesting several implications for DWDS monitoring and management.

Source to tap investigation of natural organic matter in non-disinfected drinking water distribution systems

Gabrielli M.;Antonelli M.
2023-01-01

Abstract

Despite being reduced by treatment, natural organic matter (NOM) is ubiquitous in drinking water distribution systems (DWDSs) from sources to consumers' taps where it can potentially have negative impacts on drinking water quality. While a few studies have investigated its behaviour in disinfected and NOM-rich DWDSs, its dynamics in non-disinfected systems, characterized by low NOM content, have not yet been explored. In this study, we monitored the NOM variations occurring between groundwater sources and consumers' taps of a non-disinfected DWDS, including three drinking water treatment plants, using both fluorescence and absorbance, selected due to their increasing adoption by water utilities. PARAFAC analysis of fluorescence data, combined with absorbance indices, highlighted how NOM characteristics in groundwater vary due to the combination of multiple factors (e.g., well depth, pumping rate), especially in the case of shallower aquifers. The treatment processes display different effects on NOM when monitored by fluorescence and absorbance, due to the differences among fluorophores and between fluorescent and chromophoric molecules. Variations of the NOM characteristics between the treatment plant outlets and sampling locations within the network were detected only in few locations, suggesting the importance of the processes occurring in specific sections of the network and the last meter before consumption. These findings highlight the overall stability of water quality within non- disinfected NOM-poor DWDSs, but they stress the importance of (i) properly selecting the analytical method to be used for monitoring and (ii) localized water quality variations mainly related to pipe materials, suggesting several implications for DWDS monitoring and management.
2023
Distribution network
Drinking water
Natural Organic Matter
Fluorescence
File in questo prodotto:
File Dimensione Formato  
2023 Antonelli - ESWRT - Fluorescence for drinking water.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact