We consider a charged quantum particle immersed in an axial magnetic field, comprising a local Aharonov-Bohm singularity and a regular perturbation. Quadratic form techniques are used to characterize different self-adjoint realizations of the reduced two-dimensional Schrödinger operator, including the Friedrichs Hamiltonian and a family of singular perturbations indexed by 2×2 Hermitian matrices. The limit of the Friedrichs Hamiltonian when the Aharonov-Bohm flux parameter goes to zero is discussed in terms of Γ - convergence.

Quadratic Forms for Aharonov-Bohm Hamiltonians

Fermi D.
2023-01-01

Abstract

We consider a charged quantum particle immersed in an axial magnetic field, comprising a local Aharonov-Bohm singularity and a regular perturbation. Quadratic form techniques are used to characterize different self-adjoint realizations of the reduced two-dimensional Schrödinger operator, including the Friedrichs Hamiltonian and a family of singular perturbations indexed by 2×2 Hermitian matrices. The limit of the Friedrichs Hamiltonian when the Aharonov-Bohm flux parameter goes to zero is discussed in terms of Γ - convergence.
2023
INdAM 2022: Quantum Mathematics I
978-981-99-5893-1
978-981-99-5894-8
Quadratic forms
Gamma convergence
Aharonov-Bohm effect
File in questo prodotto:
File Dimensione Formato  
25 - AB quadratic forms.pdf

Accesso riservato

: Publisher’s version
Dimensione 15.28 MB
Formato Adobe PDF
15.28 MB Adobe PDF   Visualizza/Apri
2208.06285.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 274.84 kB
Formato Adobe PDF
274.84 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact