We consider a charged quantum particle immersed in an axial magnetic field, comprising a local Aharonov-Bohm singularity and a regular perturbation. Quadratic form techniques are used to characterize different self-adjoint realizations of the reduced two-dimensional Schrödinger operator, including the Friedrichs Hamiltonian and a family of singular perturbations indexed by 2×2 Hermitian matrices. The limit of the Friedrichs Hamiltonian when the Aharonov-Bohm flux parameter goes to zero is discussed in terms of Γ - convergence.
Quadratic Forms for Aharonov-Bohm Hamiltonians
Fermi D.
2023-01-01
Abstract
We consider a charged quantum particle immersed in an axial magnetic field, comprising a local Aharonov-Bohm singularity and a regular perturbation. Quadratic form techniques are used to characterize different self-adjoint realizations of the reduced two-dimensional Schrödinger operator, including the Friedrichs Hamiltonian and a family of singular perturbations indexed by 2×2 Hermitian matrices. The limit of the Friedrichs Hamiltonian when the Aharonov-Bohm flux parameter goes to zero is discussed in terms of Γ - convergence.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
25 - AB quadratic forms.pdf
Accesso riservato
:
Publisher’s version
Dimensione
15.28 MB
Formato
Adobe PDF
|
15.28 MB | Adobe PDF | Visualizza/Apri |
2208.06285.pdf
Accesso riservato
:
Pre-Print (o Pre-Refereeing)
Dimensione
274.84 kB
Formato
Adobe PDF
|
274.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.