The observation of the high energy transients coming from the deep space is a fundamental tool for the understanding of a multitude of astrophysical phenomena. Especially since 2017—when for the first time the simultaneous detection of gravitational waves (GWs) and short gamma ray bursts (GRBs) generated by the same binary neutron star merger has been observed [1]—a new era of multi-messenger astrophysics started: observing the sky with a wide field of view and covering a large frequency range can be extremely useful to trigger the observation and accurate localization of GRBs, which, in turn, enable the search of GWs associated with these intense and wide-range electromagnetic emissions, from the radio spectrum up to gamma-rays [2].
High Energy Resolution X and Gamma Ray Imaging Spectroscopy with the ORION Multichip Readout Electronics
Mele, Filippo
2024-01-01
Abstract
The observation of the high energy transients coming from the deep space is a fundamental tool for the understanding of a multitude of astrophysical phenomena. Especially since 2017—when for the first time the simultaneous detection of gravitational waves (GWs) and short gamma ray bursts (GRBs) generated by the same binary neutron star merger has been observed [1]—a new era of multi-messenger astrophysics started: observing the sky with a wide field of view and covering a large frequency range can be extremely useful to trigger the observation and accurate localization of GRBs, which, in turn, enable the search of GWs associated with these intense and wide-range electromagnetic emissions, from the radio spectrum up to gamma-rays [2].I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


