Particle-In-Cell (PIC) methods such as the Material Point Method (MPM) can be cast in formulations suitable to the requirements of data locality and fine-grained parallelism of modern hardware accelerators such as Graphics Processing Units (GPUs). While continuum mechanics simulations have already shown the capabilities of MPM on a wide range of phenomena, the use of the method in compressible gas dynamics is less frequent. This contribution aims to show the potential of a GPU-based MPM parallel implementation for compressible fluid dynamics, as well as to assess the reliability of this approach in reproducing supersonic gas flows against solid obstacles. The results in the paper represent a stepping stone towards a highly parallel, Multi-GPU, MPM-base solver for M ach > 1 Fluid-Structure Interaction problems.
GPUs Based Material Point Method for Compressible Flows
Baioni, P.;Benacchio, T.;de Falco, C.
2023-01-01
Abstract
Particle-In-Cell (PIC) methods such as the Material Point Method (MPM) can be cast in formulations suitable to the requirements of data locality and fine-grained parallelism of modern hardware accelerators such as Graphics Processing Units (GPUs). While continuum mechanics simulations have already shown the capabilities of MPM on a wide range of phenomena, the use of the method in compressible gas dynamics is less frequent. This contribution aims to show the potential of a GPU-based MPM parallel implementation for compressible fluid dynamics, as well as to assess the reliability of this approach in reproducing supersonic gas flows against solid obstacles. The results in the paper represent a stepping stone towards a highly parallel, Multi-GPU, MPM-base solver for M ach > 1 Fluid-Structure Interaction problems.File | Dimensione | Formato | |
---|---|---|---|
Draft_Sanchez_Pinedo_244241234pap_163.pdf
accesso aperto
:
Publisher’s version
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.