Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of composition and structure on relaxation remains poorly understood. Herein, relying on accelerated molecular dynamics simulations and topological constraint theory, we investigate the relationship between atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in calcium silicate hydrates (C-S-H), the binding phase of concrete. Under constant shear stress, C-S-H is found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to the discovery of nonaging materials.

Topological control on the structural relaxation of atomic networks under stress

Masoero E.;
2017-01-01

Abstract

Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of composition and structure on relaxation remains poorly understood. Herein, relying on accelerated molecular dynamics simulations and topological constraint theory, we investigate the relationship between atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in calcium silicate hydrates (C-S-H), the binding phase of concrete. Under constant shear stress, C-S-H is found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to the discovery of nonaging materials.
2017
File in questo prodotto:
File Dimensione Formato  
2017_Bauchy_PRL.pdf

Accesso riservato

: Publisher’s version
Dimensione 443.29 kB
Formato Adobe PDF
443.29 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257264
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact