A physically based model for auotgenous shrinkage and swelling of portland cement paste is necessary for computation of long-time hydgrothermal effects in concrete structures. The goal is to propose such a model. As known since 1887, the volume of cement hydration products is slightly smaller than the original volume of cement and water (chemical shrinkage). Nevertheless, this does not imply that the hydration reaction results in contraction of the concrete and cement paste. According to the authors’ recently proposed paradigm, the opposite is true for the entire lifetime of porous cement paste as a whole. The hydration process causes permanent volume expansion of the porous cement paste as a whole, due to the growth of C–S–H shells around anhydrous cement grains which pushes the neighbors apart, while the volume reduction of hydration products contributes to porosity. Additional expansion can happen due to the growth of ettringite and portlandite crystals. On the material scale, the expansion always dominates over the contraction, i.e., the hydration per se is, in the bulk, always and permanently expansive, while the source of all of the observed shrinkage, both autogenous and drying, is the compressive elastic or viscoelastic strain in the solid skeleton caused by a decrease of chemical potential of pore water, along with the associated decrease in pore relative humidity. As a result, the selfdesiccation, shrinkage and swelling can all be predicted from one and the same unified model, in which, furthermore, the low-density and high-density C–S–H are distinguished. A new thermodynamic formulation of unsaturated poromechanics with capillarity and adsorption is presented. The recently formulated local continuum model for calculating the evolution of hydration degree and a new formulation of nonlinear desorption isotherm are important for realistic and efficient finite element analysis of shrinkage and swelling. Comparisons with the existing relevant experimental evidence validate the proposed model.

Century-long expansion of hydrating cement counteracting concrete shrinkage due to humidity drop from selfdesiccation or external drying

Masoero E.;
2019-01-01

Abstract

A physically based model for auotgenous shrinkage and swelling of portland cement paste is necessary for computation of long-time hydgrothermal effects in concrete structures. The goal is to propose such a model. As known since 1887, the volume of cement hydration products is slightly smaller than the original volume of cement and water (chemical shrinkage). Nevertheless, this does not imply that the hydration reaction results in contraction of the concrete and cement paste. According to the authors’ recently proposed paradigm, the opposite is true for the entire lifetime of porous cement paste as a whole. The hydration process causes permanent volume expansion of the porous cement paste as a whole, due to the growth of C–S–H shells around anhydrous cement grains which pushes the neighbors apart, while the volume reduction of hydration products contributes to porosity. Additional expansion can happen due to the growth of ettringite and portlandite crystals. On the material scale, the expansion always dominates over the contraction, i.e., the hydration per se is, in the bulk, always and permanently expansive, while the source of all of the observed shrinkage, both autogenous and drying, is the compressive elastic or viscoelastic strain in the solid skeleton caused by a decrease of chemical potential of pore water, along with the associated decrease in pore relative humidity. As a result, the selfdesiccation, shrinkage and swelling can all be predicted from one and the same unified model, in which, furthermore, the low-density and high-density C–S–H are distinguished. A new thermodynamic formulation of unsaturated poromechanics with capillarity and adsorption is presented. The recently formulated local continuum model for calculating the evolution of hydration degree and a new formulation of nonlinear desorption isotherm are important for realistic and efficient finite element analysis of shrinkage and swelling. Comparisons with the existing relevant experimental evidence validate the proposed model.
2019
Autogenous shrinkage
Biot coefficient
Capillarity and adsorption
Drying
Hydration
Pore water
Swelling
Thermodynamics
Unsaturated poromechanics
File in questo prodotto:
File Dimensione Formato  
2019_Rahimi-Aghdam_MS.pdf

accesso aperto

: Publisher’s version
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact