This work proposes a mixed finite element method for the Biot poroelasticity equations that employs the lowest-order Raviart-Thomas finite element space for the solid displacement and piecewise constants for the fluid pressure. The method is based on the formulation of linearized elasticity as a weighted vector Laplace problem. By introducing the solid rotation and fluid flux as auxiliary variables, we form a four-field formulation of the Biot system, which is discretized using conforming mixed finite element spaces. The auxiliary variables are subsequently removed from the system in a local hybridization technique to obtain a multipoint rotation-flux mixed finite element method. Stability and convergence of the four-field and multipoint mixed finite element methods are shown in terms of weighted norms, which additionally leads to parameter-robust preconditioners. Numerical experiments confirm the theoretical results.

Mixed and Multipoint Finite Element Methods for Rotation-Based Poroelasticity

Wietse M. Boon;Alessio Fumagalli;Anna Scotti
2023-01-01

Abstract

This work proposes a mixed finite element method for the Biot poroelasticity equations that employs the lowest-order Raviart-Thomas finite element space for the solid displacement and piecewise constants for the fluid pressure. The method is based on the formulation of linearized elasticity as a weighted vector Laplace problem. By introducing the solid rotation and fluid flux as auxiliary variables, we form a four-field formulation of the Biot system, which is discretized using conforming mixed finite element spaces. The auxiliary variables are subsequently removed from the system in a local hybridization technique to obtain a multipoint rotation-flux mixed finite element method. Stability and convergence of the four-field and multipoint mixed finite element methods are shown in terms of weighted norms, which additionally leads to parameter-robust preconditioners. Numerical experiments confirm the theoretical results.
2023
File in questo prodotto:
File Dimensione Formato  
11311-1257158_Boon.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
rotation_based_biot_AAM_.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 945.92 kB
Formato Adobe PDF
945.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact