This article presents a distributed implementation of a model predictive controller with information exchange to manage a distributed networked system of coupled dynamic subsystems. We propose a coalitional control method, where local controllers coalesce into clusters to improve performance, as a tool to solve plug-and-play problems. Our main contribution is a tube-based coalitional approach that employs online optimized invariant sets. These sets are instrumental in guaranteeing recursive feasibility and stability when faced with plug-and-play operations, i.e., subsystems joining or leaving the network. We also explore the inherent robustness properties to absorb disturbances not covered by the tubes without the need to group local controllers. Finally, the simulation results show the benefits of our proposed control method.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Robust coalitional model predictive control with plug-and-play capabilities
Masero Eva;
2023-01-01
Abstract
This article presents a distributed implementation of a model predictive controller with information exchange to manage a distributed networked system of coupled dynamic subsystems. We propose a coalitional control method, where local controllers coalesce into clusters to improve performance, as a tool to solve plug-and-play problems. Our main contribution is a tube-based coalitional approach that employs online optimized invariant sets. These sets are instrumental in guaranteeing recursive feasibility and stability when faced with plug-and-play operations, i.e., subsystems joining or leaving the network. We also explore the inherent robustness properties to absorb disturbances not covered by the tubes without the need to group local controllers. Finally, the simulation results show the benefits of our proposed control method.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).File | Dimensione | Formato | |
---|---|---|---|
art_pnp.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.