Fluid viscous dampers (FVDs) have shown their efficiency as energy-dissipating systems, reducing the effects induced on structures by dynamic loading conditions like earthquakes and winds. In this paper, the evolution of this technology is reviewed, with a focus on the current trends in development from passive to semi-active and adaptive systems and an emphasis on their advances in adaptability and control efficacy. The paper examines the implementation of semi-active FVDs such as electrorheological, magnetorheological, variable stiffness, and variable damping dampers. These devices have a high potential to mitigate the vibrations caused by earthquakes of different intensities. In addition, adaptive FVDs are presented. As semi-active devices, the adaptive ones can adjust their behavior according to the dynamic excitations’ intensity; however, they are able to do that autonomously without the use of any external equipment.

Current Trends in Fluid Viscous Dampers with Semi-Active and Adaptive Behavior

Zoccolini L.;Bruschi E.;Cattaneo S.;Quaglini V.
2023-01-01

Abstract

Fluid viscous dampers (FVDs) have shown their efficiency as energy-dissipating systems, reducing the effects induced on structures by dynamic loading conditions like earthquakes and winds. In this paper, the evolution of this technology is reviewed, with a focus on the current trends in development from passive to semi-active and adaptive systems and an emphasis on their advances in adaptability and control efficacy. The paper examines the implementation of semi-active FVDs such as electrorheological, magnetorheological, variable stiffness, and variable damping dampers. These devices have a high potential to mitigate the vibrations caused by earthquakes of different intensities. In addition, adaptive FVDs are presented. As semi-active devices, the adaptive ones can adjust their behavior according to the dynamic excitations’ intensity; however, they are able to do that autonomously without the use of any external equipment.
2023
adaptive damper
electrorheological damper
energy dissipation
fluid viscous damper
magnetorheological damper
passive damper
semi-active damper
File in questo prodotto:
File Dimensione Formato  
applsci-13-10358.pdf

Accesso riservato

Descrizione: Journal paper
: Publisher’s version
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1254224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact