Single and few layers of the two-dimensional (2D) semimetal ZrTe2 are grown by molecular beam epitaxy on InAs(111)/Si(111) substrates. Excellent rotational commensurability, van der Waals gap at the interface and moire pattern are observed indicating good registry between the ZrTe2 epilayer and the substrate through weak van der Waals forces. The electronic band structure imaged by angle resolved photoelectron spectroscopy shows that valence and conduction bands cross at the Fermi level exhibiting abrupt linear dispersions. The latter indicates massless Dirac Fermions which are maintained down to the 2D limit suggesting that single-layer ZrTe2 could be considered as the electronic analogue of graphene.

Massless Dirac Fermions in ZrTe2 Semimetal Grown on InAs(111) by van der Waals Epitaxy

Sant, Roberto;
2018-01-01

Abstract

Single and few layers of the two-dimensional (2D) semimetal ZrTe2 are grown by molecular beam epitaxy on InAs(111)/Si(111) substrates. Excellent rotational commensurability, van der Waals gap at the interface and moire pattern are observed indicating good registry between the ZrTe2 epilayer and the substrate through weak van der Waals forces. The electronic band structure imaged by angle resolved photoelectron spectroscopy shows that valence and conduction bands cross at the Fermi level exhibiting abrupt linear dispersions. The latter indicates massless Dirac Fermions which are maintained down to the 2D limit suggesting that single-layer ZrTe2 could be considered as the electronic analogue of graphene.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1253763
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 74
social impact