Laser welding is a key enabling technology that transitions toward electric mobility, producing joints with elevated electrical and mechanical properties. In the production of battery packs, cells to busbar connections are challenging due to strict tolerances and zero-fault policy. Hence, it is of great interest to investigate how beam shaping techniques may be exploited to enhance the electromechanical properties as well as to improve material processability. Industrial laser systems often provide the possibility to oscillate dynamically the beam or redistribute the power in multicore fibers. Although contemporary equipment enables elevated flexibility in terms of power redistribution, further studies are required to indicate the most adequate solution for the production of high performance batteries. Within the present investigation, both in-source beam shaping and beam oscillation techniques have been exploited to perform 0.2-0.2 mm Ni-plated steel welds in lap joint configuration, representative of typical cell to busbar connections. An experimental campaign allowed us to define process feasibility conditions where partial penetration welds could be achieved by means of in-source beam shaping. Hence, beam oscillation was explored to perform the connections. In the subset of feasible conditions, the mechanical strength was determined via tensile tests alongside electrical resistance measurements. Linear welds with a Gaussian beam profile enabled joints with the highest productivity at constant electromechanical properties. Spatter formation due to keyhole instabilities could be avoided by redistributing the emission power via multicore fibers, while dynamic oscillation did not provide significant benefits.

Effect of in-source beam shaping and laser beam oscillation on the electromechanical properties of Ni-plated steel joints for e-vehicle battery manufacturing

Caprio L.;Previtali B.;Demir A. G.
2023-01-01

Abstract

Laser welding is a key enabling technology that transitions toward electric mobility, producing joints with elevated electrical and mechanical properties. In the production of battery packs, cells to busbar connections are challenging due to strict tolerances and zero-fault policy. Hence, it is of great interest to investigate how beam shaping techniques may be exploited to enhance the electromechanical properties as well as to improve material processability. Industrial laser systems often provide the possibility to oscillate dynamically the beam or redistribute the power in multicore fibers. Although contemporary equipment enables elevated flexibility in terms of power redistribution, further studies are required to indicate the most adequate solution for the production of high performance batteries. Within the present investigation, both in-source beam shaping and beam oscillation techniques have been exploited to perform 0.2-0.2 mm Ni-plated steel welds in lap joint configuration, representative of typical cell to busbar connections. An experimental campaign allowed us to define process feasibility conditions where partial penetration welds could be achieved by means of in-source beam shaping. Hence, beam oscillation was explored to perform the connections. In the subset of feasible conditions, the mechanical strength was determined via tensile tests alongside electrical resistance measurements. Linear welds with a Gaussian beam profile enabled joints with the highest productivity at constant electromechanical properties. Spatter formation due to keyhole instabilities could be avoided by redistributing the emission power via multicore fibers, while dynamic oscillation did not provide significant benefits.
2023
battery manufacturing
beam shaping
electric mobility
laser welding
File in questo prodotto:
File Dimensione Formato  
Effect of in-source beam shaping and laser beam oscillation.pdf

embargo fino al 31/10/2024

: Publisher’s version
Dimensione 5.42 MB
Formato Adobe PDF
5.42 MB Adobe PDF   Visualizza/Apri
0Effect of in-source beam shaping and laser beam oscillation.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1253499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact