Extending Aubin's construction of metrics with constant negative scalar curvature, we prove that every n-dimensional closed manifold admits a Riemannian metric with constant negative scalarWeyl curvature, that is R + t|W|, t is an element of R. In particular, there are no topological obstructions for metrics with epsilon-pinched Weyl curvature and negative scalar curvature.

Metrics of constant negative scalar-Weyl curvature

Catino, Giovanni
2023-01-01

Abstract

Extending Aubin's construction of metrics with constant negative scalar curvature, we prove that every n-dimensional closed manifold admits a Riemannian metric with constant negative scalarWeyl curvature, that is R + t|W|, t is an element of R. In particular, there are no topological obstructions for metrics with epsilon-pinched Weyl curvature and negative scalar curvature.
2023
File in questo prodotto:
File Dimensione Formato  
11311-1253437_Catino.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 217.89 kB
Formato Adobe PDF
217.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1253437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact