Plasma-wall interaction in magnetic fusion devices is responsible for wall changes and plasma pollution with major safety issues. It is investigated both in situ and ex situ, especially by realizing large scale dedicated post-mortem campaigns. Selected parts of the walls are extracted and characterized by several techniques. It is important to extract hydrogen isotopes, oxygen or other element content. This is classically done by ion beam analysis and thermal desorption spectroscopy. Raman microscopy is an alternative and complementary technique. The aim of this work is to demonstrate that Raman microscopy is a very sensitive tool. Moreover, if coupled to other techniques and tested on well-controlled reference samples, Raman microscopy can be used efficiently for characterization of wall samples. Present work reviews long experience gained on carbon-based materials demonstrating how Raman microscopy can be related to structural disorder and hydrogen retention, as it is a direct probe of chemical bonds and atomic structure. In particular, we highlight the fact that Raman microscopy can be used to estimate the hydrogen content and bonds to other elements as well as how it evolves under heating. We also present state-of-the-art Raman analyses of beryllium- and tungsten-based materials, and finally, we draw some perspectives regarding boron-based deposits.

Raman microscopy to characterize plasma-wall interaction materials: from carbon era to metallic walls

Dellasega, D;Passoni, M;
2023-01-01

Abstract

Plasma-wall interaction in magnetic fusion devices is responsible for wall changes and plasma pollution with major safety issues. It is investigated both in situ and ex situ, especially by realizing large scale dedicated post-mortem campaigns. Selected parts of the walls are extracted and characterized by several techniques. It is important to extract hydrogen isotopes, oxygen or other element content. This is classically done by ion beam analysis and thermal desorption spectroscopy. Raman microscopy is an alternative and complementary technique. The aim of this work is to demonstrate that Raman microscopy is a very sensitive tool. Moreover, if coupled to other techniques and tested on well-controlled reference samples, Raman microscopy can be used efficiently for characterization of wall samples. Present work reviews long experience gained on carbon-based materials demonstrating how Raman microscopy can be related to structural disorder and hydrogen retention, as it is a direct probe of chemical bonds and atomic structure. In particular, we highlight the fact that Raman microscopy can be used to estimate the hydrogen content and bonds to other elements as well as how it evolves under heating. We also present state-of-the-art Raman analyses of beryllium- and tungsten-based materials, and finally, we draw some perspectives regarding boron-based deposits.
2023
File in questo prodotto:
File Dimensione Formato  
Pardanaud_MRE23_Raman PWI.pdf

accesso aperto

Descrizione: publisher's version
: Publisher’s version
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1253304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact