Urbanisation and the associated growing climate change burdens pose risks to urban and global climate resilience. Urban greenhouse gas emissions fluctuate over time in response to energy demand, which is influenced by government programmes, economic activity, and demographics. In this research, we investigate the influence of policy on urban energy demand and its consequences on mitigating climate change impacts. Using a case study of Lisbon, Portugal from 2008 to 2016, we illustrate a combined use of an urban energy metabolism assessment coupled with a logarithmic mean Divisia index to isolate the changes in energy-related carbon emissions associated with policy changes. We then link these energy flows to life cycle emissions factors to build a multi-level assessment between local and non-local global warming potential. We find that in 2016 Lisbon's energy flows generated more than 2 Mt of CO2-equivalent emissions over their life cycles, 48% of which were direct emissions within the city. This corresponds to a decrease of around 37% in greenhouse gas emissions from 2008. Additionally, we estimate the potential of Lisbon's urban forests to sequester these emissions to understand the potential for climate change mitigation. Results show that Lisbon's urban forest can meet less than 1% of the emissions throughout the assessment period. We discuss the changes, concluding that urban forests are insufficient in size to meet the sequestration demands of the urban energy metabolism, and therefore the focus must be more attuned to reducing fossil fuel use in the urban trade and transport activities.

Impacts of policy on urban energy metabolism at tackling climate change: The case of Lisbon

Javier Babi Almenar;
2020-01-01

Abstract

Urbanisation and the associated growing climate change burdens pose risks to urban and global climate resilience. Urban greenhouse gas emissions fluctuate over time in response to energy demand, which is influenced by government programmes, economic activity, and demographics. In this research, we investigate the influence of policy on urban energy demand and its consequences on mitigating climate change impacts. Using a case study of Lisbon, Portugal from 2008 to 2016, we illustrate a combined use of an urban energy metabolism assessment coupled with a logarithmic mean Divisia index to isolate the changes in energy-related carbon emissions associated with policy changes. We then link these energy flows to life cycle emissions factors to build a multi-level assessment between local and non-local global warming potential. We find that in 2016 Lisbon's energy flows generated more than 2 Mt of CO2-equivalent emissions over their life cycles, 48% of which were direct emissions within the city. This corresponds to a decrease of around 37% in greenhouse gas emissions from 2008. Additionally, we estimate the potential of Lisbon's urban forests to sequester these emissions to understand the potential for climate change mitigation. Results show that Lisbon's urban forest can meet less than 1% of the emissions throughout the assessment period. We discuss the changes, concluding that urban forests are insufficient in size to meet the sequestration demands of the urban energy metabolism, and therefore the focus must be more attuned to reducing fossil fuel use in the urban trade and transport activities.
2020
Carbon sequestration
Ecosystem services
Energy policy
Global climate regulation (GCR)
Life cycle assessment (LCA)
Logarithmic mean divisia index (LMDI)
Sustainability
Urban metabolism
File in questo prodotto:
File Dimensione Formato  
Cleaner_Prod.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1252385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact