Forecasting household waste generation using traditional methods is particularly challenging due to its high variability and uncertainty. Unlike studies that forecast waste generation at municipal or country levels, household data can present rapid short-term variations and highly non-linear dynamics. The aim of this paper is to investigate the advantages of using a state-of-the-art deep learning approach com-pared to traditional forecasting methods. We apply a multi-site Long Short-Term Memory (LSTM) Neural Network, to forecast waste generation rates from households using a long-term data base. The model is applied to historical data of weekly waste weights from households in the municipality of Herning, Denmark, in the period between 2011 and 2018. Results show that using a multi-site approach, instead of an individual fit for each household, can improve forecasting performance of the LSTM model by 28% on average, and that the LSTM approaches can effectively improve the results by 85% on average com-pared with traditional methods such as ARIMA. (C) 2020 Elsevier Ltd. All rights reserved.

Multi-site household waste generation forecasting using a deep learning approach

Cubillos, Maximiliano
2020-01-01

Abstract

Forecasting household waste generation using traditional methods is particularly challenging due to its high variability and uncertainty. Unlike studies that forecast waste generation at municipal or country levels, household data can present rapid short-term variations and highly non-linear dynamics. The aim of this paper is to investigate the advantages of using a state-of-the-art deep learning approach com-pared to traditional forecasting methods. We apply a multi-site Long Short-Term Memory (LSTM) Neural Network, to forecast waste generation rates from households using a long-term data base. The model is applied to historical data of weekly waste weights from households in the municipality of Herning, Denmark, in the period between 2011 and 2018. Results show that using a multi-site approach, instead of an individual fit for each household, can improve forecasting performance of the LSTM model by 28% on average, and that the LSTM approaches can effectively improve the results by 85% on average com-pared with traditional methods such as ARIMA. (C) 2020 Elsevier Ltd. All rights reserved.
2020
Deep learning
Forecast
Household waste generation
LSTM
Multi-site
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1252301
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 41
social impact