The temporal linear stability of plane Poiseuille flow modified by spanwise forcing applied at the walls is considered. The forcing consists of a stationary streamwise distribution of spanwise velocity that generates a steady transversal Stokes layer, known to reduce skin-friction drag in a turbulent flow with little energetic cost. A large numerical study is carried out, where the effects of both the physical and the discretization parameters are thoroughly explored, for three representative subcritical values of the Reynolds number Re. Results show that the spanwise Stokes layer significantly affects the linear stability of the system. For example, at Re=2000 the wall forcing is found to more than double the negative real part of the least-stable eigenvalue, and to decrease by nearly a factor of 4 the maximum transient growth of perturbation energy. These observations are Re dependent and further improve at higher Re. Comments on the physical implications of the obtained results are provided, suggesting that spanwise forcing might be effective to obtain at the same time a delayed transition to turbulence and a reduced turbulent friction.

Linear stability of Poiseuille flow over a steady spanwise Stokes layer

Quadrio, Maurizio
2023-01-01

Abstract

The temporal linear stability of plane Poiseuille flow modified by spanwise forcing applied at the walls is considered. The forcing consists of a stationary streamwise distribution of spanwise velocity that generates a steady transversal Stokes layer, known to reduce skin-friction drag in a turbulent flow with little energetic cost. A large numerical study is carried out, where the effects of both the physical and the discretization parameters are thoroughly explored, for three representative subcritical values of the Reynolds number Re. Results show that the spanwise Stokes layer significantly affects the linear stability of the system. For example, at Re=2000 the wall forcing is found to more than double the negative real part of the least-stable eigenvalue, and to decrease by nearly a factor of 4 the maximum transient growth of perturbation energy. These observations are Re dependent and further improve at higher Re. Comments on the physical implications of the obtained results are provided, suggesting that spanwise forcing might be effective to obtain at the same time a delayed transition to turbulence and a reduced turbulent friction.
2023
File in questo prodotto:
File Dimensione Formato  
MASSD01-23.pdf

Accesso riservato

: Publisher’s version
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri
MASSD_OA_01-23.pdf

Open Access dal 11/10/2023

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1252223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact