: The rapid advancement of diagnostic and therapeutic optical techniques for oncology demands a good understanding of the optical properties of biological tissues. This study explores the capabilities of hyperspectral (HS) cameras as a non-invasive and non-contact optical imaging system to distinguish and highlight spectral differences inbiological soft tissuesof three structures (kidney, heart, and liver) for use inendoscopic interventionoropen surgery. The study presents an optical system consisting of two individual setups, the transmission setup, and the reflection setup, both incorporating anHS camerawith apolychromatic light sourcewithin the range of 380 to 1050 nm to measure tissue's light transmission (Tr) and diffuse light reflectance (Rd), respectively. The optical system was calibrated with a customizedliquid optical phantom, then 30 samples from various organs were investigated fortissue characterizationby measuring both Tr and Rd at the visible and near infrared (VIS-NIR) band. We exploited the ANOVA test, subsequently by a Tukey's test on the created three independent clusters (kidney vs. heart: group I / kidney vs. liver: group II / heart vs. liver: group III) to identify the optimum wavelength for each tissue regarding their spectroscopic optical properties in the VIS-NIR spectrum. The optimum spectral span for the determined light Tr of the three groups was 640 ∼ 680 nm, and the ideal range was 720 ∼ 760 nm for the measured light Rd for mutual group I and group II. However, the group III range was different at a range of 520 ∼ 560 nm. Therefore, the investigation provides vital information concerning theoptimum spectral scalefor the computed light Tr and Rd of the investigatedbiological tissues(kidney, liver, and heart) to be employed in diagnostic andtherapeutic medical applications.

Custom Hyperspectral Imaging System Reveals Unique Spectral Signatures of Heart, Kidney, and Liver Tissues

Korganbayev, Sanzhar;Saccomandi, Paola;
2023-01-01

Abstract

: The rapid advancement of diagnostic and therapeutic optical techniques for oncology demands a good understanding of the optical properties of biological tissues. This study explores the capabilities of hyperspectral (HS) cameras as a non-invasive and non-contact optical imaging system to distinguish and highlight spectral differences inbiological soft tissuesof three structures (kidney, heart, and liver) for use inendoscopic interventionoropen surgery. The study presents an optical system consisting of two individual setups, the transmission setup, and the reflection setup, both incorporating anHS camerawith apolychromatic light sourcewithin the range of 380 to 1050 nm to measure tissue's light transmission (Tr) and diffuse light reflectance (Rd), respectively. The optical system was calibrated with a customizedliquid optical phantom, then 30 samples from various organs were investigated fortissue characterizationby measuring both Tr and Rd at the visible and near infrared (VIS-NIR) band. We exploited the ANOVA test, subsequently by a Tukey's test on the created three independent clusters (kidney vs. heart: group I / kidney vs. liver: group II / heart vs. liver: group III) to identify the optimum wavelength for each tissue regarding their spectroscopic optical properties in the VIS-NIR spectrum. The optimum spectral span for the determined light Tr of the three groups was 640 ∼ 680 nm, and the ideal range was 720 ∼ 760 nm for the measured light Rd for mutual group I and group II. However, the group III range was different at a range of 520 ∼ 560 nm. Therefore, the investigation provides vital information concerning theoptimum spectral scalefor the computed light Tr and Rd of the investigatedbiological tissues(kidney, liver, and heart) to be employed in diagnostic andtherapeutic medical applications.
2023
Biological Tissues
Diffuse Reflectance
Hyperspectral Imaging System
Light Absorption
Organ Spectral Signature
Tissue Properties
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S138614252301048X-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 7.63 MB
Formato Adobe PDF
7.63 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1251777
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact