: Supramolecular hydrogels formed by the self-assembly of N-Fmoc-l-phenylalanine derivatives are gaining relevance for several applications in the materials and biomedical fields. In the challenging attempt to predict or tune their properties, we selected Fmoc-pentafluorophenylalanine (1) as a model efficient gelator, and studied its self-assembly in the presence of benzamide (2), a non-gelator able to form strong hydrogen bonds with the amino acid carboxylic group. Equimolar mixtures of 1 and 2 in organic solvents afforded a 1 : 1 co-crystal thanks to the formation of an acid⋅⋅⋅amide heterodimeric supramolecular synthon. The same synthon occurred in the transparent gels formed by mixing the two components in 1 : 1 ratio in aqueous media, as revealed by structural, spectroscopic, and thermal characterizations performed on both the co-crystal powder and the lyophilized hydrogel. These findings revealed the possibility of modulating the properties of amino acid-based hydrogels by involving the gelator in the formation of a co-crystal. Such a crystal engineering-based approach is shown also to be useful for the time-delayed release of suitable bioactive molecules, when involved as hydrogel coformers.

Acid⋅⋅⋅amide supramolecular synthon for tuning amino acid-based hydrogels' properties

Veronese, Eleonora;Pigliacelli, Claudia;Terraneo, Giancarlo;Dichiarante, Valentina;Metrangolo, Pierangelo
2023-01-01

Abstract

: Supramolecular hydrogels formed by the self-assembly of N-Fmoc-l-phenylalanine derivatives are gaining relevance for several applications in the materials and biomedical fields. In the challenging attempt to predict or tune their properties, we selected Fmoc-pentafluorophenylalanine (1) as a model efficient gelator, and studied its self-assembly in the presence of benzamide (2), a non-gelator able to form strong hydrogen bonds with the amino acid carboxylic group. Equimolar mixtures of 1 and 2 in organic solvents afforded a 1 : 1 co-crystal thanks to the formation of an acid⋅⋅⋅amide heterodimeric supramolecular synthon. The same synthon occurred in the transparent gels formed by mixing the two components in 1 : 1 ratio in aqueous media, as revealed by structural, spectroscopic, and thermal characterizations performed on both the co-crystal powder and the lyophilized hydrogel. These findings revealed the possibility of modulating the properties of amino acid-based hydrogels by involving the gelator in the formation of a co-crystal. Such a crystal engineering-based approach is shown also to be useful for the time-delayed release of suitable bioactive molecules, when involved as hydrogel coformers.
2023
crystal engineering
hydrogen bonding
phenylalanine
self-assembly
supramolecular hydrogels
File in questo prodotto:
File Dimensione Formato  
2023_ChemEurJ_F5Phe_pre-print.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1251721
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact