Metal-assisted chemical etching (MACE) has emerged as an effective method to fabricate high aspect ratio nanostructures. This method requires a catalytic mask that is generally composed of a metal. Here, we challenge the general view that the catalyst needs to be a metal by introducing oxide-assisted chemical etching (OACE). We perform etching with metal oxides such as RuO2 and IrO2 by transposing materials used in electrocatalysis to nanofabrication. These oxides can be solution-processed as polymers exhibiting similar capabilities of metals for MACE. Nanopatterned oxides can be obtained by direct nanoimprint lithography or block-copolymer lithography from chemical solution on a large scale. High aspect ratio silicon nanostructures were obtained at the sub-20 nm scale exclusively by cost-effective solution processing by halving the number of fabrication steps compared to MACE. In general, OACE is expected to stimulate new fundamental research on chemical etching assisted by other materials, providing new possibilities for device fabrication.

Replacing Metals with Oxides in Metal-Assisted Chemical Etching Enables Direct Fabrication of Silicon Nanowires by Solution Processing

Cattoni, Andrea;
2021-01-01

Abstract

Metal-assisted chemical etching (MACE) has emerged as an effective method to fabricate high aspect ratio nanostructures. This method requires a catalytic mask that is generally composed of a metal. Here, we challenge the general view that the catalyst needs to be a metal by introducing oxide-assisted chemical etching (OACE). We perform etching with metal oxides such as RuO2 and IrO2 by transposing materials used in electrocatalysis to nanofabrication. These oxides can be solution-processed as polymers exhibiting similar capabilities of metals for MACE. Nanopatterned oxides can be obtained by direct nanoimprint lithography or block-copolymer lithography from chemical solution on a large scale. High aspect ratio silicon nanostructures were obtained at the sub-20 nm scale exclusively by cost-effective solution processing by halving the number of fabrication steps compared to MACE. In general, OACE is expected to stimulate new fundamental research on chemical etching assisted by other materials, providing new possibilities for device fabrication.
2021
Block-Copolymer
Metal Assisted Chemical Etching
Nanofabrication
Nanoimprint
Oxides
Sol−Gel
File in questo prodotto:
File Dimensione Formato  
Replacing Metals with Oxides in Metal-Assisted Chemical Etching Enables Direct Fabrication of Silicon Nanowires by Solution Processing.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 694.28 kB
Formato Adobe PDF
694.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1250677
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact