Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes.

Interface engineering of ultrathin Cu(In,Ga)Se-2 solar cells on reflective back contacts

Cattoni, A;
2021-01-01

Abstract

Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes.
2021
CIGS
interface engineering
reflective back contact
silver
ultrathin solar cells
File in questo prodotto:
File Dimensione Formato  
11311:1250559_for peer review.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Interface engineering of ultrathin Cu(In,Ga)Se2 solar cells on reflective back contacts.pdf

Accesso riservato

: Publisher’s version
Dimensione 25.96 MB
Formato Adobe PDF
25.96 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1250620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact