Ultrafast plasmonics is driving growing interest for the search of novel plasmonic materials, overcoming the main limitations of noble metals. In this framework, titanium nitride (TiN) is brought in the spotlight for its refractory properties combined with an extremely fast electron-lattice cooling time (<100 fs) compared to gold (approximate to 1 ps). Despite the results reported in literature, a clear-cut explanation of the origin of the ultrafast and giant optical response of TiN-based materials upon excitation with femtosecond laser pulses is still missing. To address this issue, an original model is introduced, capable of unfolding the modulation of TiN optical properties on a broad bandwidth, starting from the variations of electronic and lattice temperatures following ultrafast photoexcitation. The numerical analysis is validated on ultrafast pump-probe spectroscopy experiments on a simple structure, a TiN film on glass. This approach enables a complete disentanglement of the interband and intraband contributions to the permittivity modulation. Moreover, it is also shown that, varying the synthesis conditions of the TiN film, not only the static, but also the dynamical optical response can be efficiently tuned. These findings pave the way for a breakthrough in the field: the design of TiN-based ultrafast nanodevices for all-optical modulation of light.

Unfolding the Origin of the Ultrafast Optical Response of Titanium Nitride

Rotta Loria, Silvia;Bricchi, BR;Schirato, A;Mascaretti, L;Mancarella, C;Li Bassi, A;Della Valle, G;Zavelani-Rossi, Margherita
2023-01-01

Abstract

Ultrafast plasmonics is driving growing interest for the search of novel plasmonic materials, overcoming the main limitations of noble metals. In this framework, titanium nitride (TiN) is brought in the spotlight for its refractory properties combined with an extremely fast electron-lattice cooling time (<100 fs) compared to gold (approximate to 1 ps). Despite the results reported in literature, a clear-cut explanation of the origin of the ultrafast and giant optical response of TiN-based materials upon excitation with femtosecond laser pulses is still missing. To address this issue, an original model is introduced, capable of unfolding the modulation of TiN optical properties on a broad bandwidth, starting from the variations of electronic and lattice temperatures following ultrafast photoexcitation. The numerical analysis is validated on ultrafast pump-probe spectroscopy experiments on a simple structure, a TiN film on glass. This approach enables a complete disentanglement of the interband and intraband contributions to the permittivity modulation. Moreover, it is also shown that, varying the synthesis conditions of the TiN film, not only the static, but also the dynamical optical response can be efficiently tuned. These findings pave the way for a breakthrough in the field: the design of TiN-based ultrafast nanodevices for all-optical modulation of light.
2023
hot electrons
plasmonic materials
titanium nitride
ultrafast transient absorption spectroscopy
ultrafast plasmonics
File in questo prodotto:
File Dimensione Formato  
Rotta_Loria_AOM_2023.pdf

accesso aperto

: Publisher’s version
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1250018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 2
social impact